第九章 基因与生命起源
天地伊始,万物从简。1
——理查德·道金斯(Richard Dawkins),
《自私的基因》(The Selfish Gene)
我难道不是一只
像你一样的虻虫?
你难道不是一个
像我一样的俗人?2
——威廉·布莱克(William Blake),《虻虫》(The Fly)
尽管遗传物质的传递机制已经从分子层面得到阐明,但是这反而让困扰托马斯·摩尔根的谜题更加令人费解。对于摩尔根而言,生物学需要探寻的主要奥秘不是基因而是生命的起源:“遗传单位”如何在机体构成与功能维护中发挥作用呢?(他曾经对某个学生说:“由于自己刚刚结束(遗传学)演讲,因此请原谅我哈欠连天。”)
摩尔根指出,基因是解决纷繁复杂生命现象的完美方案。在有性生殖过程中,生物体的信息以压缩形式进入单个细胞,然后这个细胞又可以重新演化为生物体。摩尔根意识到,基因解决了遗传信息的传递问题,可是由此又产生了生物体的发育问题。因此这种单个细胞必须能够携带构建生物体的完整指令(也就是基因)。那么基因到底如何指导单个细胞再次成为完整的生物体呢?
※※※
如果人们仅凭直觉进行判断,那么胚胎学家应该肩负起探索生命起源的重任,而这个过程需要涵盖从胚胎早期到生物体成熟阶段的全过程。由于某些无法避免的原因(我们即将看到),人类对于生物体发育的认识是以某种倒序方式进行的。其中最先破译的是基因影响大体解剖特征(四肢、器官与结构)的机制,接着是生物体决定这些结构位置(前后、左右、上下)的机制,最后才是明确机体轴线、前后以及左右方位(胚胎发育过程中最早期发生的事件)的机制。
当然产生这种倒序研究的原因显而易见。控制大体结构(例如四肢与翅膀)的基因突变往往具有典型的特征且非常容易被发现与描述。然而控制机体结构基本要素的基因突变较难分辨,其原因在于这种突变大大降低了生物体的存活率。此外由于头尾结构异常的胚胎在早期即夭折,因此无法捕捉到胚胎形成初期发生的基因突变。
※※※
20世纪50年代,加州理工学院的果蝇遗传学家爱德华·路易斯(Edward Lewis)开始重建果蝇胚胎的形成过程。路易斯就像一位专心致志的建筑史学家,他对果蝇结构的研究已经坚持了将近20年。形状与豌豆类似的果蝇胚胎细如沙粒,但是其生长发育的速度却非常惊人。卵子受精大约10小时后,果蝇胚胎就可以分出头节、胸节以及腹节等三部分,而这些体节还将进一步形成亚节。路易斯知道,胚胎体节与成年果蝇的结构呈对应关系。其中某段胚胎体节将发育为第二胸节并长出一对翅膀。此外,果蝇的三个胸节上还长有六条腿,而其他体节则可以长出刚毛或者触角。果蝇与人类发育的共同之处在于,胚胎的基本轮廓与成年状态十分相似。随着这些体节的发育,果蝇也在不断走向成熟,整个过程就像手风琴演奏一样自然连贯。
但果蝇胚胎是如何“知道”该从第二胸节中长出腿或者从头节长出触角(而不是按照相反的顺序)的呢?路易斯专门研究那些体节异常的果蝇突变体。3他发现这些突变体具有相同的特征,其中果蝇大体结构的基本轮廓都得到保留,只有体节的位置或是功能发生了互换。例如,某个突变体出现一个额外的(形态完整功能相似)胸节,那么这将导致产生四翼果蝇(两组翅膀分别从正常胸节与额外胸节中长出)。仿佛构建胸节的基因明知自身位置异常,但是依然固执地按照错误的指令运行。而在另一种突变体中,本应该是果蝇头节触角的部位却长出了两条腿,感觉是头节错误地发出了构建蝇腿的指令。
路易斯总结道:构建器官与结构的信息由主控“效应”基因编码,其工作原理类似于自主部件或子程序。在果蝇(或任何其他生物体)正常繁衍过程中,这些效应基因会在特定的位点与时间启动,并且将决定果蝇机体分节与器官功能。这些主控基因可以左右其他基因的“启动”与“关闭”,它们就像是微处理器中紧密相连的电路。效应基因突变可以导致畸形或者体节与器官异位。就像《爱丽丝漫游仙境》中红桃皇后身边那个不知所措的仆人一样,基因在错误的时间与空间里匆忙发布着指令(构建胸节或是长出翅膀)。如果某个主控基因发出了“启动触角发育”的信号,那么构建触角的子程序就会开始运行并生成触角(即便这种结构错误地发生于胸节或者腹节上)。
※※※
然而谁才是真正的幕后指使呢?爱德华·路易斯的发现包括控制体节、器官与结构发育的主控基因,并且成功解决了胚胎发育最后阶段的问题,但同时也提出了一个看似无限递归的难题。如果胚胎是由控制各个体节和器官(它们彼此之间互为邻里)身份的基因构建,那么某个体节从胚胎发育伊始是如何知道自己身份的呢?例如,某个负责翅膀的主控基因如何“知道”要在第二胸节构建翅膀,而不是在第一或者第三胸节呢?如果遗传模块的自主性如此之高,那么果蝇的腿为何不会生长在头上,人类拇指也不会从鼻子里长出来呢?
为了能更好地解释这些问题,我们需要回顾一下研究胚胎发育的进程。克里斯汀·纽斯林—沃尔哈德(Christiane Nüsslein-Volhard)与埃里克·威绍斯(Eric Wieschaus)是海德堡大学的两位胚胎学家。1979年,他们开始通过果蝇突变体来探究胚胎形成的早期事件,而此时距路易斯发表有关控制肢体与翅膀发育基因的论文已经过去一年。
纽斯林—沃尔哈德与威绍斯制造的突变体甚至比路易斯所描述的种类更为丰富。在某些突变体中,部分胚胎的整个体节消失或者胸节与腹节大幅缩短,类似于某个出生时即表现为中段或者后段缺失的胎儿。纽斯林—沃尔哈德与威绍斯推断,这些突变体中的基因决定了胚胎发育的蓝图,它们才是主宰胚胎世界的统治者。上述突变基因将把胚胎分成基本亚节,并且可以激活路易斯发现的主控基因,然后开始在某些(且只有这些)位置构建器官与身体结构(例如头上的触角以及第四胸节上的翅膀等)。因此纽斯林—沃尔哈德与威绍斯将其命名为“分节基因”。
可是即使是分节基因也会受到主控基因的影响:果蝇的第二胸节如何“知道”自己属于胸节而并非腹节呢?或者说果蝇如何才能分辨出头尾发育的正确位置呢?果蝇胚胎的每个节段均对应着胚轴上的某个部位。果蝇头节的功能类似于内置的GPS(全球定位系统),其中每个体节相对于胚胎头尾的位置使它们拥有了独一无二的“地址”。那么胚胎是如何在发育过程中展现出其基本的原始不对称性(例如头尾之间的区别)的呢?
20世纪80年代末期,纽斯林—沃尔哈德带领学生们开始孵化最后一批果蝇突变体,而此时已经不用考虑胚胎结构不对称的问题。这些头尾不全的突变体早在分节出现之前就已经停止发育(当然更无从谈起什么结构与器官)。某些突变体胚胎的头部会出现畸形,另外一些则会出现背腹不分的情况,并将表现为怪异的镜像胚胎(其中最有名的突变体当属“bicoid”,从字面上理解是“双尾”的意思)。显然镜像胚胎缺乏某些可以决定果蝇背腹面的因子(化学物质)。1986年,纽斯林—沃尔哈德的学生设计了一项精巧的实验,他们使用显微操作针穿刺正常的果蝇胚胎,并且从它的头部提取一滴体液,然后将其移植到无头突变体上。令人惊讶的是,这种细胞手术居然获得了成功:来自正常头部的体液可以诱导无头胚胎在其尾部发育出头状结构。
1986年至1990年间,纽斯林—沃尔哈德与同事发表了一系列具有开创性的文章,他们最终鉴别出几个发出控制胚胎头尾信号的因子。现在我们知道,果蝇卵子在发育过程中会产生8种此类化合物(主要是蛋白质),而且它们在卵子内沉积的位置并不对称。雌性果蝇可以决定母体因子在卵子中的生成与位置。由于不对称性沉积源自卵子本身在雌性果蝇体内的不对称分布,因此这些母体因子可以分别沉积于卵子的头端或者尾端。
这些蛋白质在卵子中按照浓度梯度分布。就像方糖在咖啡中溶解扩散一样,卵子中的蛋白质浓度也会根据位置不同而表现出高低差异。化学物质在蛋白质基质中的扩散颇具立体感,看上去好似麦片粥上呈条带状分布的糖浆。此外分别位于高低浓度端的特定基因将被激活,于是果蝇胚胎将按照“头—尾轴”或者形成其他模式发育。
这是个无限递归的过程,与鸡蛋相生的故事类似。头尾完整的果蝇会产生携带头尾基因的卵子,它们将在发育中成为具有头尾的胚胎,并且最终长成为拥有头尾的果蝇,而该过程依此类推循环往复。如果我们从分子水平来解释的话,那么母体果蝇将让早期胚胎中的蛋白质优先沉积于卵子的某端。它们可以激活或者沉默与发育有关的基因,并且按照从头到尾的顺序定义胚胎轴。然后这些基因又将激活产生分节的“制图师”基因,它们将把果蝇身体划分为不同的结构域。制图师基因可以激活与沉默构建器官和结构的基因。[1]最终,器官形成基因与体节识别基因又可以使遗传子程序得到激活或沉默,从而形成果蝇的器官、结构以及部位。
事实上,人类胚胎发育可能也需要通过上述三个过程来实现。与果蝇胚胎发育的过程一样,“母体效应”基因可以使早期胚胎按照化学梯度形成主轴(包括头尾轴、背腹轴以及左右轴)。接下来,某些功能与果蝇分节基因相仿的基因将启动胚胎分裂,并且形成大脑、脊髓、骨骼、皮肤、内脏等主要结构。最后,器官构建基因将授权建造四肢、手指、眼睛、肾脏、肝脏以及肺等器官、部位与结构。
1885年,德国神学家马克斯·穆勒(Max Müller)曾经提出质疑:“虫化身为蛹,蛹破茧成蝶,蝶重回尘埃,这难道不是罪孽吗?”4但是仅仅过了一个世纪,飞速发展的生物学就给出了答案。这与罪孽无关,而是基因在起作用。
※※※
在利奥·李奥尼(Leo Lionni)经典的儿童绘本《一寸虫》中,由于一寸虫承诺将以身体作为工具来“测量万物”,因此知更鸟没有把它吃掉。一寸虫测量了知更鸟的尾巴、巨嘴鸟的喙、火烈鸟的脖子以及苍鹭的腿,并且成为鸟类世界的首位比较解剖学家。5
现在就连遗传学家也学会了借助小型生物体去测量、比较以及理解体型更大的生物体。其中孟德尔和摩尔根曾经开展的豌豆与果蝇研究就是最好的案例。果蝇从胚胎诞生到首个体节形成需要历经700分钟,同时该过程无疑是生物学发展史上最受人们关注的时间段,其研究结果部分解决了生物学中最重要的问题之一:基因是如何将单个细胞打造成为结构精致的复杂生物体的呢?
现在我们还需要某种体型更小的生物体来解决剩余的难题,即胚胎中的细胞如何“知道”自己将要变成什么。在总结果蝇胚胎大体轮廓特点的基础上,果蝇胚胎学家将其发育过程依次分为轴线确立、体节形成以及器官构建这三个阶段,其中每个阶段都会受到一系列的基因调控。可是如果我们希望从最基础的层面来理解胚胎发育的话,那么基因学家就需要了解基因支配单个细胞命运的机制。
20世纪60年代中期,悉尼·布伦纳开始在剑桥寻找某种有助于破解细胞命运决定之谜的生物体。对于布伦纳来说,即便是果蝇(拥有“复眼、节足与复杂的行为模式”)这般袖珍的生物体也显得过于庞大。如果要了解基因支配细胞命运的机制,那么布伦纳就需要找到某种体型微小且结构简单的生物体,这样每个源自胚胎的细胞都可以非常容易地被计数与跟踪(相比而言,人类由37万亿个细胞组成。哪怕是功能最强大的计算机也无法预测人类细胞的命运)。
布伦纳成了微小生物的鉴赏家,他简直就是阿兰达蒂·洛伊(Arundhati Roy)笔下的微物之神。为了找到符合要求的动物,他仔细查阅了大量19世纪出版的动物学教科书。最后,布伦纳选定了一种体形微小的土壤线虫,其学名为秀丽隐杆线虫(Caenorhabditis elegans),也可以简称为秀丽线虫。动物学家指出,只要秀丽线虫进入成熟期,那么每个成虫都将具有固定的细胞数。根据布伦纳的理解,这些恒定的细胞数就像是通往新宇宙的大门:如果每个蠕虫具有相同数量的细胞,那么基因必然携带着决定蠕虫体内每个细胞命运的指令。他在给佩鲁茨的信中写道:“我们打算对秀丽线虫体内的每个细胞进行鉴别并且追溯其谱系。此外,我们还将研究它们发育的恒常性问题,然后再通过寻找突变体来了解其遗传控制机理。”6
细胞计数法早在20世纪70年代早期就已经得到广泛应用。起初,布伦纳说服了实验室的同事约翰·怀特来对秀丽线虫神经系统中的所有细胞进行定位。但是布伦纳很快就将该范围扩大到追踪线虫体内每个细胞的谱系。正在从事博士后工作的研究人员约翰·萨尔斯顿也应邀加入了细胞计数工作。1974年,刚刚走出哈佛大学校门的年轻生物学家罗伯特·霍维茨(Robert Horvitz)也参与到布伦纳与萨尔斯顿的团队中。
根据霍维茨的回忆,细胞计数令人筋疲力竭,甚至会在工作中产生幻觉,实验者仿佛在长时间注视着“某个盛有几百颗葡萄的容器”7,然后要在这些葡萄的时空关系发生改变后找到其具体位置。经过艰苦的努力,他们终于完成了这幅反映细胞命运的图谱。秀丽线虫的成虫分为雌雄同体与雄性这两种不同类型。其中雌雄同体线虫有959个细胞,雄性线虫有1 031个细胞。到了20世纪70年代末期,雌雄同体线虫中959个体细胞的谱系均可追溯至其原始细胞。这幅貌似普通的图谱承载着细胞的命运,科学史上的其他作品均不能与之相提并论。现在他们将开始进行细胞谱系与身份的研究。
※※※
这幅细胞图谱具有三大显著特征。首先是它的不变性。每条线虫体内的959个细胞都以某种中规中矩的方式出现。霍维茨说:“你只需要看着地图就可以逐个细胞重现生物体的构建过程。你也许会说,细胞每12小时将分裂一次,那么它在48小时后应该分化为神经元细胞,并且在60小时后移动到线虫神经系统所在部位,然后会在那里度过余生。其实你的判断完全正确,实际中的细胞发育模式正是如此。它会在精确的时间移动到正确的位置。”
然而是什么决定了每个细胞的身份呢?到了20世纪70年代末期,霍维茨与萨尔斯顿已经创建了数十个正常细胞谱系被打乱的线虫突变体。如果头上长腿的果蝇让人感到另类的话,那么这些线虫突变体就是来自动物园的怪胎。例如在某些突变体中,控制线虫外阴(该器官形成了子宫出口)的基因失去了正常功能。由于此类无外阴线虫排出的卵细胞无法脱离子宫,因此母体相当于被自己未出生的后代生生吞掉,而它们就像来自日耳曼神话中的怪物。这些突变体中发生改变的基因负责控制外阴细胞的身份。此外另有某些基因分别负责控制细胞分裂的时机、细胞移动的方向以及细胞最终的形状和大小。
爱默生曾经写道:“没有历史记载;只有传记流传。”8当然对于线虫来说,历史已被凝聚成为细胞传记。基因告诉每个细胞该“做”什么(何时何地),因此它们都知道自己“是”什么。线虫的结构就像是一部计时精准的遗传钟表,其运行规律与运气、魔法、混沌以及命运毫无关系。细胞是组成生物体的基本单元,而它们会接受遗传指令的统一调控。生命起源实际上是基因潜移默化的过程。
※※※
如果说基因在调控细胞属性(出生、位置、形状、大小以及身份)方面已经做到无懈可击,那么最后那批线虫突变体则揭开了另外一项更为重要的发现。20世纪80年代早期,霍维茨与萨尔斯顿逐渐发现,即便是细胞死亡的过程也为基因所掌控。每个成年雌雄同体线虫具有959个细胞,但是如果算上线虫发育中生成的细胞,那么实际的细胞数应该达到1 090个。而就是这个不起眼的差异让霍维茨陷入了无尽的遐想,为什么上述131个细胞会莫名其妙地消失呢?9它们在发育过程中产生,但是却在成熟阶段死亡。这些细胞在发育过程中被遗弃,它们就像是迷失在生命之路上的孩童。当萨尔斯顿与霍维茨用谱系图追踪这131个细胞的死亡路径时,他们发现只有在特定时间产生的特定细胞才会被杀死。这种选择性净化由基因决定,属于线虫正常发育的过程。此类按照细胞意愿发生的有序死亡也可以看作基因“编程”的结果。
程序性死亡?遗传学家刚才还在研究线虫的程序性生活,难道死亡也是由基因控制的吗?1972年,澳大利亚病理学家约翰·克尔(John Kerr)在正常组织与肿瘤组织中均发现了某种相似的细胞死亡模式。在克尔的结果公布之前,生物学家曾认为死亡在很大程度上是由外伤、损害或感染引起的偶发事件,而人们将这种现象称为“坏死”(necrosis),其字面的意思是“变黑”(blackening)。坏死通常伴随着组织分解,并且出现化脓或者坏疽形成。但是克尔在某些组织里发现,濒死细胞似乎可以在这条不归路中激活特定的结构发生改变,好像它们在内部启动了“死亡子程序”。濒死细胞不会引起坏疽、创伤或炎症,它们呈现出珍珠样光泽的半透明状,感觉像是花瓶中即将凋谢的百合。如果坏死的表现为细胞变黑,那么这种死亡的特点就是细胞变白。克尔本能地推测这两种死亡形式有着本质区别。他写道,这种“受控的细胞缺失不仅会定期发生,而且还是一种与生俱来的程序化现象”,它由细胞内的“死亡基因”控制。克尔用“凋亡”(apoptosis)来描述这一过程,这个源自希腊语的词语让人联想起树叶从枝头或者花瓣从花朵上飘落。10
但是这些“死亡基因”到底长什么样呢?霍维茨与萨尔斯顿又构建了一批突变体,它们的区别并不在于细胞谱系,而是在于细胞的死亡模式。在某种突变体中,濒死细胞的成分无法充分碎片化。在另一种突变体中,死细胞无法从线虫体内排出,导致死细胞杂乱地堆积在虫体周边,就像罢工后堆满垃圾的那不勒斯街头。11霍维茨认为,这些突变体内发生改变的基因就是导致凋亡的始作俑者,它们就相当于细胞世界中的刽子手、清道夫、保洁员与殡葬师。
此外还有一组突变体的细胞死亡模式更为夸张,甚至就连细胞的尸体都没有来得及形成。他们在某条线虫体内发现,本应该消失的131个细胞全部活了下来。可是在另一条线虫体内,某些特定的细胞也可以幸免于难。霍维茨的学生将这些突变线虫戏称为“不死虫”或“僵尸线虫”。它们体内的失活基因是细胞死亡级联反应的主控基因。霍维茨将其命名为ced基因,源自秀丽隐杆线虫死亡(C. elegans death)首字母的缩写。
值得注意的是,科学家们很快就在人类癌症中发现了某些调节细胞死亡的基因。此外正常人类细胞同样拥有这种控制程序性死亡的凋亡基因。许多凋亡基因的历史非常久远,它们的结构和功能与在线虫和果蝇体内发现的死亡基因相类似。1985年,肿瘤生物学家斯坦利·歌丝美雅(Stanley Korsmeyer)注意到一种名为BCL2的基因在淋巴瘤中反复发生突变。[2]原来,BCL2基因相当于人类的ced9基因,而该基因是霍维茨发现的线虫死亡调节基因。在线虫中,ced9基因通过隔离细胞死亡相关执行蛋白来阻止细胞死亡(因此会在线虫突变体中出现“不死”细胞)。但是在人体中,BCL2被激活后将会阻断细胞的死亡级联反应,从而导致细胞出现病理性永生化,并且最终导致癌症发生。
※※※
难道只有基因才能决定线虫体内每个细胞的命运吗?霍维茨与萨尔斯顿在线虫体内还发现了某些成对存在的罕见细胞,然而它们的命运就像抛硬币一样难以捉摸。12实际上,决定这些细胞命运的并不是遗传因素,而是细胞之间邻近效应的结果。戴维·赫什(David Hirsh)与朱迪思·金布尔(Judith Kimble)是两位在科罗拉多大学工作的线虫生物学家,他们将这种现象称为“自然模糊性”。
金布尔发现,即便是自然模糊性也无法充分诠释上述现象。13事实上某个模糊细胞的身份会受到来自邻近细胞的信号调控,但是邻近细胞本身又会接受遗传指令的预排。线虫之神明显在虫体设计时留下了细微的破绽,但是它就是若无其事地我行我素。
因此线虫在构建虫体时受到两种输入信号的作用,分别源自基因的“内部”指令与细胞间交互作用的“外部”指令。布伦纳则开玩笑地称其为“英国模式”与“美国模式”。布伦纳写道,在英国模式中,细胞“只关注自己的事情,并且很少与‘邻居’交流。它们的命运由血统决定,一旦细胞在某个特定位置降生,它将会在此处按照苛刻的规则进行发育。然而美国模式却与之大相径庭。血统不会起到任何作用……只有邻里之间的交互作用才是决定因素。它会频繁地与同伴细胞交换信息,同时还会经常改变位置来完成上述任务,最终找到适合自己的栖身场所”。14
如果强行把外部与内部指令引入到线虫的生命中会产生什么变化呢?1978年,金布尔搬到剑桥后就开始研究强力干扰对细胞命运的影响。15她先采用激光烧灼的方法杀死虫体内的单个细胞。然后她发现在严格控制实验条件的前提下,细胞消融可以改变其邻近细胞的命运。但是那些已经由遗传因素预先决定的细胞几乎无法改变自身的命运。与之相反,那些表现为“自然模糊性”的细胞却具有较好的依从性,可即便如此,它们改变自身命运的能力也非常有限。下面我们举例来说明外因与内因之间的相互作用。假设你把一位身着灰色法兰绒西服的先生从伦敦地铁的皮卡迪利线上突然带走,然后施展腾挪把他塞入纽约地铁开往布鲁克林的F线上。尽管此刻时空环境已经转换,但是当他离开幽深的隧道后,还是希望在午餐时吃到伦敦的牛肉馅饼。外因带来的改变在线虫的微观世界发挥着作用,不过这种作用需要经过基因镜片的过滤与折射,因此会在现实中受到遗传物质的严重制约。
※※※
虽然是胚胎学家发现了控制果蝇与线虫生死的基因级联反应,但是这些成果对于遗传学领域同样具有深远的影响。在解答摩尔根“基因如何指定果蝇”问题的同时,胚胎学家还破解了一个更深层面的谜题:遗传单位如何让生物体表现出令人困惑的复杂性。
其实我们可以从组织结构与交互作用中找到答案。单一主控基因编码的蛋白质功能可能相当有限,例如它只是起到控制12个靶基因开启的作用。假设基因开关的活性取决于蛋白质浓度,并且该蛋白质在生物体内呈梯度分层,同时高浓度区与低浓度区分别位于其两端,那么这种蛋白质可能会在某个部位启动全部12个靶基因,而在另外一个区域启动8个靶基因,当然在其他地方也会出现只能启动3个靶基因的情况。此外每种靶基因的组合(数量分别为12、8、3)还与其他蛋白梯度相交,并且起到激活与抑制其他基因的作用。如果给这种基因组合赋予时空维度(例如基因在何时何地被激活或被抑制),那么就可以根据自己的想象来自由发挥了。当基因与蛋白质的属性(等级、梯度、开关以及“电路”)完成混合与匹配之后,我们就可以观测到生物体在解剖结构与生理功能上的复杂性。
就像某位科学家描述的那样:“……单个基因本身并没有什么过人之处,它们能够影响的分子非常有限……但是这种简单性并未成为构建高度复杂生物体的障碍。如果通过几种不同种类的蚂蚁(工蚁、雄蚁等诸如此类)就可以建起庞大的蚁群,那么在面对随机配置的3万个级联基因时,你可以让自己的想象尽情地发挥。”16
遗传学家安托万·当尚(Antoine Danchin)曾经用德尔斐之船的寓言来形容个体基因为自然界创造复杂性的过程。17众所周知,人们用德尔斐神谕来思考水中泛舟船板腐烂的问题。随着船体出现破损,船板也被逐个换掉。等到10年之后,最初的船板已经荡然无存。然而船主却认为这还是同一条船。但是如果每个原始的物质元素都已被替换,那么现在这条船怎么可能跟原来那条船相同呢?
答案在于“船”并非由船板制成,而是由船板之间的关系组成。如果你把一百张彼此堆叠的木板压实,那么就可以得到一堵厚实的木墙;如果将木板边对边钉在一起,那么就可以做成甲板;因此造船时船板的形状、关系与顺序均需要满足特定条件。
研究显示,基因也在以相同的方式运行。个体基因可以决定个体功能,而它们之间的相互关系将促成生理功能。如果没有这些交互作用的关系,那么基因组的功能将无从体现。虽然人类与线虫拥有的基因数量均为2万左右,但是只有人类能够创作出西斯廷教堂的穹顶壁画。这个事实表明,基因数量对于机体的生理复杂性而言无足轻重。某个巴西桑巴舞教练曾经对我说:“重要的不是你拥有什么,而是你通过它实现什么。”
※※※
理查德·道金斯是一位进化生物学家与作家,他提出的解释基因形态与功能之间联系的比喻最具代表性。道金斯指出,某些基因具备反映生物体发展蓝图的作用。蓝图是展示建筑结构或者机械构造的缩影,其全部特性均与它代表的结构具有点对点的对应关系。例如房门可以精确地按照1∶20的比例进行缩小,而螺丝也可以被不差分毫地定位在距轮轴7英寸的地方。根据同样的逻辑,“蓝图”基因可以编码“构建”结构(或蛋白质)的指令。凝血因子Ⅷ基因只生产一种蛋白质,其主要功能是促进血液凝集成块。凝血因子Ⅷ基因发生突变相当于蓝图中出现错误。突变基因产生的效应非常明显并且完全可以预测。突变的凝血因子Ⅷ基因无法实现正常的血液凝固,由此导致的相应功能障碍(无缘无故出血)是蛋白质功能改变的直接后果。18
然而绝大多数基因的作用与蓝图不同,它们并不指导单一结构或部分的构建。相反,这些基因将与其他基因级联协作实现复杂的生理功能。道金斯认为,这些基因不像蓝图而更像某种配方。例如在某种蛋糕配方中,认为糖与面粉构成了蛋糕“顶部”与“底部”的想法毫无意义。通常情况下,配方中的单一组分与结构之间并不存在对应关系,配方只是操作过程的指南。
蛋糕是糖、黄油与面粉交互作用的结果,但是它们也受到混合比例、环境温度与时间因素的制约。同理,人类生理学也是特定基因与其他基因交互作用的产物,并且整个过程必须按照正常的顺序与地点进行。单个基因只是构建生物体的复杂配方中的一员,而人类基因组才决定人类的配方。
※※※
到了20世纪70年代早期,就在生物学家开始破译基因在生物体形成中的复杂机制时,他们也遇到了定向操纵生物基因这个无法回避的问题。1971年4月,美国国立卫生研究院组织召开了一次会议,其内容是明确在不久的将来向生物体引入遗传改变是否可行。本次会议被命名为“人为遗传改变之前景”,主办方希望公众提高对于操纵人类基因可能性的认识,并且认真思考这些技术产生的社会与政治影响。
1971年,基因操作(即便是在结构简单的微生物体内)的方法尚未问世,但是专家组成员表示他们对该技术的前景充满信心,实现上述目标不过是时间早晚的问题。某位遗传学家宣称:“这不是科幻小说。科幻小说虚无缥缈,根本无法用实验证实……目前可以想象到的是,或许就在未来的5年到10年内,而无须再过25年或是100年,某些先天性疾病……将在引入缺失基因的管理后得到治疗甚至治愈。为了让社会做好迎接挑战的准备,我们任重而道远。”
只要此类技术问世,那么其影响力将不言而喻,而构建人体的配方也可能会被改写。某位科学家在会议上指出,基因突变历经岁月长河的精挑细选,但是人工突变可以在短短几年之内就完成上述过程。如果能够将“人为遗传改变”引入人体,那么遗传改变的步伐可能会赶上文化变革的速度。某些常见的人类疾病或许就此根除,而个人史与家族史将被永远改写。同时这项技术将重塑遗传、身份、疾病与未来的概念。正如加利福尼亚大学旧金山分校的生物学家戈登·汤姆金斯(Gordon Tomkins)所言:“人类有史以来第一次开始质疑自己——我们到底在做什么?”
※※※
接下来是我的一段回忆:那是在1978年或1979年,我大概八九岁的时候,父亲正好出差回来。他的包还放在车里,餐厅桌子的托盘上放着一杯冰水,杯子的外壁上挂满了水滴。这种酷热的午后在德里已经司空见惯,吊扇徒劳地转动却丝毫不能缓解室内的高温。两位邻居正在客厅里等着父亲,空气中似乎弥漫着某种难以名状的焦虑气息。
父亲走进客厅与邻居们交谈了几分钟,我感到这次谈话并不愉快。他们的声音越来越大,双方的言辞也愈发尖锐。我本该在隔壁房间做作业,但是即便隔着水泥墙也能听出他们谈话的大概内容。
虽然贾古向两位邻居借的钱并不多,但是也足够让他们愤愤不平地来我家追债了。贾古对其中一位邻居说他没钱去买药(从来没人给他开过处方),然后又对另外一位邻居说他要乘火车去加尔各答探望其他兄弟(由于贾古不可能独自旅行,因此根本不存在这种事)。其中一位邻居责怪父亲:“你该好好管管他了。”
父亲在安静倾听的时候表现出极大的克制,但是我还是能感觉到他胸中无处宣泄的怒火。父亲走向钢制壁橱,取出家里的备用现金还给两位邻居,并且示意钱数足以弥补他们的损失。他并不在意这几个小钱,而邻居们也不用找零。
两位债主刚一离开,我就知道家里必将上演一场激烈的争吵。就像动物在海啸来临前具有逃难的本能一样,家里的厨师早已悄悄溜走去找祖母。父亲与贾古之间的紧张状态已经持续了一段时间:过去的几周里,贾古在家里的行为尤具破坏性,而这件事则把父亲推向了爆发的边缘。我看到他憋得满脸通红。父亲长期以来竭尽全力维系着家族的体面,可是这些曾经不为人知的秘密却在顷刻间暴露无遗。现在左邻右舍都知道贾古只是个满口胡言的疯子。同时他们也对父亲的形象彻底失望:认为他卑劣刻薄且冷酷愚蠢,连自己的兄弟都管不好。更为糟糕的是,人们怀疑他可能也是家族性精神病患者。
父亲走进贾古的房间,猛地将他拽到床下。贾古发出阵阵凄惨的哀号,就像个面临惩罚的懵懂孩童。怒不可遏的父亲情绪变得极不稳定。他将贾古猛然推到房间的另一头。父亲从未与家人发生过冲突,但是眼前的暴力倾向令人感到害怕。妹妹跑到楼上躲了起来,母亲则藏在厨房里哭泣,而我当时就站在客厅的窗帘后面,如同观看慢动作电影一样目睹了可怕的一幕。
随后祖母赶到现场,眼神中闪着愤怒的寒光。她冲着父亲大声喊叫,音量至少是父亲的两倍。她的眼睛就像烧红的木炭,语气中也充满了挑战:“你敢再碰他一下!”
“还不出来!”祖母厉声催促着,这时贾古才匆忙躲到她身后。
我从未见过祖母如此刚烈的一面。她似乎回到了曾经的故乡,重新操起了熟悉的孟加拉语。祖母浓重的乡音掷地有声,而我只能勉强辨认出子宫、洗刷、污点这几个单词。当我把这些单词拼成句子后,才明白祖母正在对天发誓:“如果你再敢动手,我就把你赶出这个家。我说到做到!”
此时父亲的眼中也噙满了泪水。他的头无力地垂下,似乎已经筋疲力尽。“好吧,”父亲在一旁恳求着喃喃自语道,“好吧,我走,好吧。”
[1] 这就引出了一个问题,即自然界中第一个非对称性生物体是如何出现的呢?我们对此一无所知,或许我们永远都无法找到答案。在进化史的某个阶段,生物体进化就是为了将机体功能按照不同的部位进行区分,并且可以产生大相径庭的结果。幸运的突变体与生俱来拥有某种神奇的能力,它能将蛋白质局限于口端而非足端。这种鉴别口足的能力赋予突变体一种选择性优势:每个不对称部位都可以根据其特定任务得到进一步细化,从而使生物体更能适应生活环境。因此人类的不对称性也是进化创新的产物。
[2] 澳大利亚的大卫·沃克斯(David Vaux)与苏珊娜·科丽(Suzanne Cory)也发现BCL2基因具有抑制细胞凋亡的功能。